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Abstract. Inequalities for efficiencies of heat engines and for the coefficients of perfor- 
mance of heat pumps are obtained for positive and negative absolute temperatures. There 
are strong analogies between heat engines at negative (positive) temperatures and heat 
pumps at positive (negative) temperatures. Minor improvements are shown to be desirable 
in the Kelvin-Planck formulation of the second law as amended for negative temperatures. 
The Clausius formulation is also discussed and the term perpetuum mobile ofa third kind is 
proposed for a class of realisable physical situations. 

1. Introduction 

Although negative temperatures? are reasonably well understood (e.g. Ramsey 1956, 
Powles 1963), a systematic analysis of all possibilities is not available. This is supplied 
here in response to recent discussions by Tykodi (1975, 1976), Danielian (1976), 
Dunning-Davies (1976), Tremblay (1976) and White (1976). (That adiabatic surfaces 
connecting regions of opposite temperature sign do not exist (Tremblay 1976) has been 
known for some time (Landsberg 1959).) 

It is shown on the basis of the principle of the increase of entropy (0 2) by this 
systematic analysis that heat engines at positive (negative) temperatures have analogies 
with heat pumps at negative (positive) temperatures, and that this carries through to 
operations between temperatures of opposite sign (§ 3). Amendments to some second 
law formulations are suggested as a result of this study (0 4). Various other minor 
corrections of earlier statements are implied in the present work; for example, negative 
efficiencies (Ramsey 1956, p 22) are here impossible because engines and pumps are 
clearly distinguished. 

2. General theory 

Two constant temperature reservoirs h and c, at temperatures Th and T, deliver 
quantities of heat Oh, Q, to a working medium during the isothermal parts of each 
cycle. These are separated by adiabatic changes of any kind. Negative Q implies that 

t Temperatures will be understood to be absolute temperatures throughout. 
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heat is given to a reservoir. The convention is made that h is ‘hotter’ than c in the sense 
-1/Thb -l /Tcso that 

l/Tc-l/ThaO. (1 1 
As the medium recovers its initial state at the end of a cycle, the entropy increase per 
cycle (for the total system is isolated) arises from changes in the reservoirs and leads to 

a h /  Th - Q,/ Tc. (2) 

A heat leak between the reservoirs occurs if the heat lost by one reservoir is gained by 
the other: Qh + Q, = 0. Relation (2) then implies 

(1 / Tc - 1 / Th)Q, 3 0. 

Using (l), it follows that Qh 3 0 and hence QcS 0. Thus spontaneous heat flow is from h 
to c for all signs of the temperature. 

If 1 is the heat lost per cycle by such dissipative processes as heat leakage between 
the reservoirs, the work done by the medium per cycle is 

w= Qh+ Q c - l ,  (1 3 0). (3 1 
It will be assumed that 1 does not exceed numerically any of the other three terms in 
equation (3). In fact, to avoid algebraic complications, it will be assumed to be always 
small enough so that its presence does not change inequalities that would hold if 1 = 0. 
Using (2), one finds 

( w +  I)/ TC 6 (1 / TC - 1 / Th)Qh 

- (w + 1)Th 3 (I/ Tc- 1/ rh)Qc. 

77 = W/(all positive Q) 

(4) 

(5 ) 

(6 1 
A heat engine is here defined by the condition W +  1 > 0. It has an efficiency 

(W+ 1 > 0). 

If work has to be supplied to the medium to pump heat, one has a heat pump, which is 
defined here by W +  1 < 0. It has a coefficient of performance. 

CP = (all negative Q)/ l  WI ( W + 1 < 0). ( 7 )  

Both 7 and CP are decreased by a heat leak. But whereas 77 6 1, CP can exceed unity, as 
is demonstrated in any case below. 

Heat pumps include refrigerators (r). The narrower definitions for W+ 1 < 0 

can of course be made, a 

CPhp-&= 1 

d l = O t o  

Of the heat pump situations in table 1 none satisfy these narrower definitions except for 
(13), which satisfies both. We therefore do not pursue the distinctions (7a, b, c )  here. 

Note that the cycles need not be quasistatic. They are largely arbitrary, except that 
the working fluid must recover its initial state at the end of a cycle (Landsberg 1961). 
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The above theory is specialised in table 1. Some comments follow. 

3.1. Heat engines at negative temperatures 

In (9) entropy is lost by h, just as in the conventional positive temperature case, but heat 
flows into h. In (10) and ( l l ) ,  however, entropy is gained by h, and second law 
inequalities are not involved in these results. In all three cases the situation 7 = 1 can be 
approached in an ideal cycle (quasistatic and 1 = 0), since there is nothing against a 
choice of Q h = O  in (9) or Q,=O in (10) and (11). In each case therefore the 
Kelvin-Planck statement of the second law (that heat cannot be subtracted from a 
reservoir and be completely converted into work without leaving changes elsewhere) 
must fail. This is known, for the case (9), but it applies also to the cases (10) and (1 l ) ,  as 
well as to (12) (see 0 3.4 below). 

There is no need to remove h physically in case (9). It is sufficient to allow the heat 
rejected into h, I Q h /  S (Th/T,)Q,, to leak back into c after each cycle. The effect is that 
heat Q,- l Q h l  is withdrawn from c and fully converted into work, while h acts merely as 
a kind of catalyst. A numerical example is Th = -20 K, T, = -40 K, Q,= 70 J, 
Qh = - 30 J, W = 40 J, with an entropy increase per cycle of 5- t = a J K-'. 

These findings seem to agree with White (1976), but not with the comments of 
Ramsey (1956, p 22) that 77 < 0, and Tykodi (1975) that the situation is 'canonical'. 

3.2. Heat pumps at positive temperatures 

The three cases arising under this heading have close analogies, not noted before, with 
the corresponding cases for heat engines at negative temperatures. All the work 
supplied can be converted into heat (CP = l),  as is expected from the possibility of using 
the work for irreversibly stirring a fluid. The second reservoir is not needed on 
thermodynamic grounds since Q, = 0 in (13) and Qh = 0 in (14) are possible. In fact 
after each cycle in the case (13) the heat withdrawn from c, Q,S (Tc/Th)IQhI, could be 
allowed to leak back to c. This would restore c to its original state and give it the status 
of a catalyst. A numerical example if T, = 20 K, Th = 40 K, Q, = 30 J, Qh = -70 J, 
W = -40 J, with an entropy increase per cycle of 5-3 = a J K-'. 

3.3. Heat pumps at negative temperatures 

There is in this (single) case again an analogy with heat engines, this time with the 
normal Carnot cycle. 

3.4. Heat engines between temperatures of opposite sign 

A thermodynamic phase space contains an open set of points y within which entropy 
and absolute temperature can be defined, since each point has a neighbourhood which 
lies wholly within y. The axis given by 1/T= 0 does not lie within such a set (Landsberg 
1959, 1961, Tremblay 1976), so that a cycle linking temperatures of opposite sign 
cannot be represented by a curve in phase space. It contains non-static adiabatic parts. 
Two possibilities of this type arise and are given in the table. 



1778 P T Landsberg 

If therefore 7 exceeds unity, then I Q c I  + 1 > Qh and W <  0. Thus the engine has turned 
into a pump according to the present definition; and for a pump one uses the CP rather 
than q. 

The argument leading to (18) does not appeal to the second law. The second law 
constraint (4) states in the case (12) 

It leads to (Dunning-Davies 1976) 

This suggests that, for 1 = 0, q can exceed unity, but this occurs, as clear from (18), only 
if the engine turns into a pump. It may be thought that at least in the special case 
I /  W >  Tc/lThl, (19) may be useful since it then seems to be a stronger inequality than 
(18). However, this possibility will here be ignored since for convenience 1 is always 
regarded as small enough not to disturb inequalities which hold for 1 = 0. The second 
law provides therefore no constraints: the process is always compatible with it. 

3.5. Heat pumps between temperatures of opposite sign 

As in 0 3.4, two cases are possible. The second law constraint for the lowest CP is now 
misleadingly low: 

by ( 5 ) .  This suggests that for large enough 1 Thl/ Tc the CP can lie arbitrarily close to zero. 
However, the condition for a pump is 

I Q c [ >  Qh-1. 

It follows that 

so that the CP must be in excess of unity for small enough 1. The thermodynamic 
inequality (20) is in this sense weaker than the condition for a pump. 

3.6. Infinite temperatures 

As the second reservoir can be dispensed with for engines utilising at least one 
negative-temperature reservoir, no new features are brought into play if reservoirs are 
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effectively made unnecessary by allowing Th+m or TC+-fo. (We differ in this 
observation from some of the authors cited.) This is rather fortunate as the state 
1 /T= 0 is on the boundary of sets y (see § 3.4), and an entropy can be defined for it 
thermodynamically only by some limiting device (Landsberg 1961, 0 16, Dunning- 
Davies 1972). The moot point whether or not processes using a reservoir having 
1/ T = 0 are possible, and, if they are, whether or not they can be reversible is therefore 
eliminated from the present thermodynamic discussion. This seems reasonable since 
our conclusions should not depend on using one state rather than a closely neighbouring 
one. 

4. Second law formulations 

4.1.  Engines 

Given heat is absorbed from h in (8) (Q, > 0), entropy is decreased and heat must be 
rejected (Qc< 0) to increase the entropy. Hence q < 1, as required by the Kelvin- 
Planck statement. In (9) to (12), given that heat is withdrawn from a negative 
temperature reservoir its entropy is increased. The second law does not then require 
the other reservoir, so that heat can be completely converted into work in an ideal cycle 
(I = 0). One now needs to hypothesise 1 > 0 to stop such a complete conversion. This 
constraint does operate in the case of the non-static cycles needed in (12)and (1 l a ) ,  but 
it does not operate in (9) to (11) if the fiction of an isolated spin system is maintained. 
One is thus led to facing more squarely than heretofore the full conversion of heat into 
work, and to arrive at the following modified Kelvin-Planck statement (for engines): 

Heat can be completely converted into work by a heat engine which takes a medium 
through a cyclic process, if and only if, that heat is withdrawn from a negative- 
temperature reservoir. 

It is in accordance with the ideas of the pioneers of thermodynamics to call an engine 
which converts heat from a negative-temperature reservoir completely into work a 
perpetuum mobile of the third kind (if it is of the second kind it uses a positive- 
temperature reservoir). Its usefulness is unfortunately limited by the fact that large and 
permanent negative-temperature reservoirs are not known. The above statement 
asserts the existence of the third kind and the non-existence of the second kind, of 
perpetuum mobile. 

4.2. Heat pumps 

Given that heat is rejected into a reservoir (Q<O), its entropy is increased if its 
temperature is positive. The second law does not then require a second reservoir, and 
the whole of the work supplied can in principle be converted into this heat as noted in 
detail in connection with (13) in § 3. But it also applies to (14), (15), (17) and ( 1 5 ~ ) .  

If the rejection is into a negative-heat reservoir, its entropy is decreased and a second 
reservoir is needed, as seen in (16), which corresponds to the original Carnot case (8). 
Both cases were in fact picked up in Ramsey’s modification of the Kelvin-Planck 
formulation: ‘It is impossible to construct an engine that will operate in a closed cycle 
and produce no effect other than: (i) the extraction of heat from a positive-temperature 
reservoir with the performance of an equivalent amount of work; or (ii) the rejection of 
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heat into a negative-temperature reservoir with the corresponding work being done on 
the engine'. In fact (i) rules out Q, b 0 in (8), and (ii) rules out Qh C 0 in (16). This 
statement does not cover all cases. One has also to rule out  under (i) the rejection of heat 
into a negative temperature reservoir (Q, S 0) in (12), and under (ii) the extraction of 
heat from a positive temperature reservoir (QC2 0) in (17). This requires a reconstruc- 
tion of Ramsey's statement, in such a way as to rule out the physical situations 
mentioned above, while at the same time not ruling out the cases q = 1 in (9), (lo), (1 l) ,  
( l l a ) ,  (12)and t h e c a s e s e =  1 in(13), (14), (15), (15a)and(17). Anysuchstatement is 
bound to be rather complicated, and it seems preferable to replace it by the above rule 
of 0 4.1. This applies to heat engines. The matching rule for pumps is: 

Work can be completely converted into heat by a heat pump which takes a medium 
through a cyclic process, if and only if, the rejection of heat takes place to a 
positive-temperature reservoir. 

4.3. Clausius statement 

The Clausius statement of the second law may be formulated in various ways. (i) It is 
impossible to construct a device that, operating in a cycle, produces no effect other than 
the transfer of heat from a cooler to a hotter body; or (ii) if heat is transferred from a 
body to one warmer than itself, then some interchange of heat and work occurs; or (iii) if 
heat is transferred from a body to one warmer than itself, then some mechanical work 
has to be used to heat a reservoir. Statement (i) is compatible with spontaneous heat 
flow from h to c, as 'other effects' are then needed to reverse this heat flow. Statement 
(ii) is compatible with this and also with (9) and (13). Statement (iii) holds for 
positive-temperature reservoirs only (cf (13)). For negative-temperature reservoirs the 
transfer from a cold to a hot reservoir is accompanied by the conversion of heat into 
work (cf (9)), and (iii) fails. Whether (i), (ii) or a corrected form of (iii) is used for the 
Clausius statement is of course a matter of taste. 

Note added in proof. Dr C Gruber, Lausanne, has kindly drawn my attention to the 
following book: Stueckelberg E C G and Scheurer P B 1974 Thermocine'tique 
Phe'nome'nologique Galile'enne (Basel: Birkhauser). On page 67ff a careful division 
between pumps and engines for positive and negative temperatures is also made. 
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